Spring 2025 Laird Homework 8 Solutions

Question 1

The figure shows a portion of the graph of the polar function $r = 2 - 4\cos\theta$ in the polar coordinate system for $a \le \theta \le b$.

Part A

 $a = 0, b = \frac{\pi}{3}$

Let's look at some key points on the curve.

- When $\theta = 0$: $r = 2 4\cos(0) = 2 (4)(1) = -2$
- When $\theta = \frac{\pi}{3}$: $r = 2 4\cos(\frac{\pi}{3}) = 2 (4)(\frac{1}{2}) = 2 2 = 0$
- When $\theta = \frac{\pi}{2}$: $r = 2 4\cos(\frac{\pi}{2}) = 2 (4)(0) = 2$
- When $\theta = \pi$: $r = 2 4\cos(\pi) = 2 (4)(-1) = 2 + 4 = 6$
- When $\theta = 2\pi$: $r = 2 4\cos(2\pi) = 2 (4)(1) = -2$

From $\theta = 0$ to $\theta = \frac{\pi}{3}$, r is negative and increasing, which means the curve is plotted in the third quadrant.

Question 2

Consider the polar function $r = 3 \cdot (\cos \theta)$.

Part A

Quadrants I and IV

For the function $r = 3 \cos \theta$:

When $0 \le \theta < \frac{\pi}{2}$: $\cos \theta > 0$, so r > 0. The point (r, θ) is in Quadrant I.

When $\frac{\pi}{2} < \theta < \pi$: $\cos \theta < 0$, so r < 0. A negative r means we plot $(|r|, \theta + \pi)$, which puts the point in Quadrant III. However, since we're asking about the original curve, there are no points in Quadrant II.

When $\pi < \theta < \frac{3\pi}{2}$: $\cos \theta < 0$, so r < 0. This corresponds to points in Quadrant IV (after converting negative r values).

When $\frac{3\pi}{2} < \theta < 2\pi$: $\cos \theta > 0$, so r > 0. The point (r, θ) is in Quadrant IV.

Because the function is periodic, the curve from $\theta = 0$ to $\theta = 2\pi$ is the same as the curve from $\theta = 2\pi$ to $\theta = 4\pi$, and so on.

Therefore, the curve $r = 3\cos\theta$ contains points only in Quadrants I and IV.

Part B

Quadrants II and III

For the function $r = -3\cos\theta$:

This is the negative of the previous function. Where r was positive in part (a), it will now be negative, and vice versa.

When $0 \le \theta < \frac{\pi}{2}$: $\cos \theta > 0$, so now r < 0. A negative r means we plot $(|r|, \theta + \pi)$, which puts the point in Quadrant III.

When $\frac{\pi}{2} < \theta < \pi$: $\cos \theta < 0$, so now r > 0. The point (r, θ) is in Quadrant II.

When $\pi < \theta < \frac{3\pi}{2}$: $\cos \theta < 0$, so now r > 0. The point (r, θ) is in Quadrant III.

When $\frac{3\pi}{2} < \theta < 2\pi$: $\cos \theta > 0$, so now r < 0. When converted, this puts points in Quadrant II.

Therefore, the curve $r = -3\cos\theta$ contains points only in Quadrants II and III.

Part C

All four quadrants

For the function $r = 3\cos\theta + 4$:

We need to determine when r > 0 and when r < 0.

 $r = 3\cos\theta + 4 < 0$ when $3\cos\theta < -4$, which means $\cos\theta < -\frac{4}{3}$.

Since $-1 \le \cos \theta \le 1$ for all real θ , and $-\frac{4}{3} < -1$, there's no value of θ for which r < 0.

Therefore, r > 0 for all values of θ , which means the curve $r = 3\cos\theta + 4$ contains points in all four quadrants. More generally, the curve $r = a\cos\theta + b$ for some non-zero b will contain points in all four quadrants.

Question 3

Express the complex number 7 + 7i in polar form $r(\cos \theta + i \sin \theta)$.

 $7\sqrt{2}(\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4}))$

For the complex number 7 + 7*i*: $r = \sqrt{a^2 + b^2} = \sqrt{7^2 + 7^2} = \sqrt{98} = 7\sqrt{2}$ $\theta = \arctan(\frac{b}{a}) = \arctan(\frac{7}{7}) = \arctan(1) = \frac{\pi}{4}$ Since the point is in Quadrant I, no adjustment to θ is needed. Therefore, $7 + 7i = 7\sqrt{2}(\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4}))$

Question 4

Consider the polar function $r = \frac{\theta}{2}$ defined for $\theta \ge 0$.

Part A

The radius increases linearly with θ at half the rate of θ . As θ increases, r increases proportionally but at a slower rate.

For the function $r = \frac{\theta}{2}$, the radius is directly proportional to the angle θ , with a proportionality constant of $\frac{1}{2}$.

As θ increases, r also increases, but at half the rate of θ . For every increase of 2 radians in θ , the radius r increases by 1 unit.

Part B

The function forms a spiral that starts at the origin and continuously winds outward. As θ increases, the distance from the origin increases, creating an unbounded spiral shape.

The function $r = \frac{\theta}{2}$ describes a spiral curve.

When $\theta = 0$, r = 0, so the curve starts at the origin.

As θ increases, r also increases, causing the curve to spiral outward from the origin.

The curve makes a complete turn around the origin when θ increases by 2π . During this turn, the radius increases by π units.

Question 5

Consider the polar function $r = 2 - \cos(-\theta)$.

Part A

As θ changes from $\frac{\pi}{2}$ to π , the distance between the origin and the point $(f(\theta), \theta)$ increases.

First, note that $\cos(-\theta) = \cos(\theta)$ since cosine is an even function. So our function simplifies to $r = 2 - \cos(\theta)$.

Now, we analyze how r changes as θ changes from $\frac{\pi}{2}$ to π .

When $\theta = \frac{\pi}{2}$: $r = 2 - \cos(\frac{\pi}{2}) = 2 - 0 = 2$

When $\theta = \pi$: $r = 2 - \cos(\pi) = 2 - (-1) = 3$

As θ increases from $\frac{\pi}{2}$ to π , $\cos(\theta)$ decreases from 0 to -1.

Therefore, $r = 2 - \cos(\theta)$ increases from 2 to 3.

The distance between the origin and the point $(f(\theta), \theta)$ increases as θ changes from $\frac{\pi}{2}$ to π .

Part B

For the function $r = 2 - \cos(\theta)$ over the interval $[\frac{\pi}{2}, \pi]$: The minimum value of r will occur when $\cos(\theta)$ is at its maximum, since $\cos(\theta)$ is being subtracted. In the interval $[\frac{\pi}{2}, \pi]$, the maximum value of $\cos(\theta)$ is $\cos(\frac{\pi}{2}) = 0$. Therefore, the minimum value of r is $r = 2 - \cos(\frac{\pi}{2}) = 2 - 0 = 2$.

Part C

Maximum value = 3

For the function $r = 2 - \cos(\theta)$ over the interval $\left[\frac{\pi}{2}, \pi\right]$:

The maximum value of r will occur when $\cos(\theta)$ is at its minimum, since $\cos(\theta)$ is being subtracted.

In the interval $\left[\frac{\pi}{2}, \pi\right]$, the minimum value of $\cos(\theta)$ is $\cos(\pi) = -1$.

Therefore, the maximum value of r is $r = 2 - \cos(\pi) = 2 - (-1) = 3$.

Question 6

Consider the polar function $r = 1 + 2\sin\theta$ for $0 \le \theta \le 2\pi$.

Part A

r is decreasing on the interval $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$

For the function $r = 1 + 2\sin\theta$, we need to find where r is decreasing.

r is decreasing when $\sin\theta$ is decreasing.

Therefore, r is decreasing on the interval $(\frac{\pi}{2}, \frac{3\pi}{2})$.

Part B

The distance is increasing on the intervals $(0, \frac{\pi}{2}), (\frac{7\pi}{6}, \frac{3\pi}{2}), (\frac{11\pi}{6}, 2\pi)$

This question asks for intervals where the distance between the point and the origin is increasing.

The distance from the origin is increasing when $r \ge 0$ and increasing **OR** $r \le 0$ and decreasing.

r is decreasing on the interval $(\frac{\pi}{2}, \frac{3\pi}{2})$, and r is increasing on the intervals $(0, \frac{\pi}{2}), (\frac{7\pi}{6}, \frac{3\pi}{2})$, and $(\frac{11\pi}{6}, 2\pi)$. $r \ge 0$ when $\sin(\theta) \ge -\frac{1}{2}$

 $\sin(\theta) \geq -\frac{1}{2}$ when $\theta \in [0, \frac{7\pi}{6}]$ and $\theta \in [\frac{5\pi}{3}, 2\pi]$

Therefore $r \ge 0$ and increasing on the intervals $(0, \frac{\pi}{2}), (\frac{7\pi}{6}, \frac{3\pi}{2}), (\frac{11\pi}{6}, 2\pi)$

Additionally, $r \leq 0$ and decreasing on the interval $\left(\frac{7\pi}{6}, \frac{3\pi}{2}\right)$

Therefore, the distance is increasing on the intervals $(0, \frac{\pi}{2}), (\frac{7\pi}{6}, \frac{3\pi}{2}), (\frac{11\pi}{6}, 2\pi)$

Question 7

Consider the polar function $r = -1 + \sin \theta$

Part A

For the function $r = -1 + \sin \theta$ over the interval $(0, \frac{\pi}{2})$: The minimum value of r will occur when $\sin \theta$ is at its minimum in this interval. In the interval $(0, \frac{\pi}{2})$, $\sin \theta$ increases from $\sin(0) = 0$ to $\sin(\frac{\pi}{2}) = 1$. The minimum value of $\sin \theta$ in this interval is $\sin(0) = 0$. Therefore, the minimum value of r is $r = -1 + \sin(0) = -1 + 0 = -1$.

Part B

The graph lies above or on the x-axis in the intervals $[\pi, 2\pi]$

A point in polar coordinates (r, θ) lies above or on the x-axis when its y-coordinate is non-negative. This can occur when θ is in Quadrants I or II, and r is non-negative. It can also occur when θ is in Quadrants III or IV, and r is non-positive. For our function $r = -1 + \sin \theta$, r is always non-positive, because the maximum value of $\sin(\theta)$ is 1. Therefore, the graph lies above or on the x-axis when θ is in Quadrants III or IV.

Our solution is $[\pi, 2\pi]$.

Question 8

Consider the polar function $r = 2\sin(2\theta)$ for $0 \le \theta \le \pi$.

Part A

r has extrema at $\theta = \frac{\pi}{4}, \ \theta = \frac{3\pi}{4}$

For the function $r = 2\sin(2\theta)$, we need to find where r has extrema in the interval $[0, \pi]$. r has extrema when $\frac{dr}{d\theta} = 0$. $\frac{dr}{d\theta} = 4\cos(2\theta)$ Setting this to zero: $4\cos(2\theta) = 0\cos(2\theta) = 0$ This occurs when $2\theta = \frac{\pi}{2} + n\pi$ for integer n. Solving for θ in the interval $[0, \pi]$: $\theta = \frac{\pi}{4} + \frac{n\pi}{2}$ For n = 0: $\theta = \frac{\pi}{4}$ For n = 1: $\theta = \frac{3\pi}{4}$ Therefore, r has extrema at $\theta = \frac{\pi}{4}$ and $\theta = \frac{3\pi}{4}$ in the interval $[0, \pi]$.