
Spring 2025 Laird Homework 8

1. The figure below shows a portion of the graph of the polar function $r = 2 - 4 \cos \theta$ in the polar coordinate system for $a \le \theta \le b$.

- (a) If $0 \le a < b \le 2\pi$, find the values of a and b that represent the portion of the curve shown.
- **2.** Consider the polar function $r = 3 \cdot (\cos \theta)$.
 - (a) Determine which quadrants contain points of this curve.
 - (b) Consider the function $r = -3 \cdot (\cos \theta)$. Determine which quadrants contain points of this curve.
 - (c) Consider the function $r = 3 \cdot (\cos \theta) + 4$. Determine which quadrants contain points of this curve.
- **3.** Express the complex number 7 + 7i in polar form $r(\cos \theta + i \sin \theta)$.
- **4.** Consider the polar function $r = \frac{\theta}{2}$ defined for $\theta \ge 0$.
 - (a) Explain how the radius changes as θ increases.
 - (b) Describe the shape of the function.
- **5.** Consider the polar function $r = 2 \cos(-\theta)$.
 - (a) As θ changes from $\frac{\pi}{2}$ to π , describe how the distance between the origin and the point with polar coordinates $(f(\theta), \theta)$ changes.
 - (b) Find the minimum value of r in the interval $\frac{\pi}{2} \leq \theta \leq \pi$.
 - (c) Find the maximum value of r in the interval $\frac{\pi}{2} \leq \theta \leq \pi$.
- **6.** Consider the polar function $f(\theta) = r = 1 + 2\sin\theta$ for $0 \le \theta \le 2\pi$.
 - (a) Find all intervals where r is decreasing.
 - (b) Find all intervals where the distance between the point with polar coordinates $(f(\theta), \theta)$ and the origin is increasing.

NB: These two questions are related, but not identical.

- 7. Consider the polar function $r = -1 + \sin \theta$ for $0 \le \theta \le 2\pi$.
 - (a) Find the minimum value of r in the interval $0 < \theta < \frac{\pi}{2}$.

- (b) Find all intervals where the points on the graph lie above or on the x-axis.
- 8. Consider the polar function $r = 2\sin(2\theta)$ for $0 \le \theta \le \pi$.
 - (a) Find all values of θ in this interval where r has an extremum.