Solutions

Question 6 Solutions:

A) To find $\cos(5\pi/12)$, we use the fact that $5\pi/12 = \pi/4 + \pi/6$ and apply the cosine addition formula:

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$

$$\cos\left(\frac{5\pi}{12}\right) = \cos\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{6}\right) - \sin\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{6}\right)$$

$$= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2}$$

$$= \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}$$

$$= \frac{\sqrt{6} - \sqrt{2}}{4}$$

B) For $\sin(5\pi/12)$, we use the sine addition formula:

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$$

$$\sin\left(\frac{5\pi}{12}\right) = \sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{6}\right) + \cos\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{6}\right)$$

$$= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2}$$

$$= \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4}$$

$$= \frac{\sqrt{6} + \sqrt{2}}{4}$$

C) For $\sin(7\pi/12)$, note that $\frac{7\pi}{12} = \frac{\pi}{4} + \frac{\pi}{3}$, so:

$$\sin\left(\frac{7\pi}{12}\right) = \sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{3}\right) + \cos\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{3}\right)$$
$$= \frac{\sqrt{2}}{2} \cdot \frac{1}{2} + \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}$$
$$= \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4}$$
$$= \frac{\sqrt{2} + \sqrt{6}}{4}$$

D) Using the cosine addition formula:

$$\cos\left(x + \frac{\pi}{4}\right) = \cos(x)\cos\left(\frac{\pi}{4}\right) - \sin(x)\sin\left(\frac{\pi}{4}\right)$$
$$= \cos(x) \cdot \frac{\sqrt{2}}{2} - \sin(x) \cdot \frac{\sqrt{2}}{2}$$
$$= \frac{\sqrt{2}}{2}\left(\cos(x) - \sin(x)\right)$$

E) Using the sine addition formula:

$$\sin(\pi + x) = \sin(\pi)\cos(x) + \cos(\pi)\sin(x)$$
$$= 0 \cdot \cos(x) + (-1) \cdot \sin(x)$$
$$= -\sin(x)$$

F) Using the cosine subtraction formula:

$$\cos(x - \pi) = \cos(x)\cos(\pi) + \sin(x)\sin(\pi)$$
$$= \cos(x) \cdot (-1) + \sin(x) \cdot 0$$
$$= -\cos(x)$$

Question 7 Solutions:

A) The frequency of a function is the reciprocal of the period. From the graph, we can see that f(x) completes one full cycle from $x = -\pi$ to $x = 3\pi$. Therefore:

Period =
$$4\pi$$

Frequency = $\frac{1}{\text{Period}} = \frac{1}{4\pi}$

B) To find $f(1000\pi)$, we need to determine where in the cycle this input falls. Since the period is 4π , we can use modular arithmetic:

$$1000\pi = 250 \cdot 4\pi + 0$$

So $f(1000\pi) = f(0) = 0$

We can verify from the graph that f(0) = 0.

C) Similarly for $f(1001\pi)$:

$$1001\pi = 250 \cdot 4\pi + \pi$$

So $f(1001\pi) = f(\pi) = 1$

We can verify from the graph that $f(\pi) = 1$.

D) To determine the slope of f(x) at $x = 10\pi$, we first find where in the cycle this input falls:

$$10\pi = 2 \cdot 4\pi + 2\pi$$

So $f(10\pi) = f(2\pi)$

Looking at the graph, at $x = 2\pi$ (and equivalently at $x = 10\pi$), the function is decreasing. Therefore, the slope is negative.

E) To find $g(10\pi)$, we use the fact that g(x) has period 2π and find where in the cycle this input falls:

$$10\pi = 5 \cdot 2\pi + 0$$

So $g(10\pi) = g(0) = 2$

F) For $g(-7\pi/2)$, we need to first make the input positive by adding periods:

$$-\frac{7\pi}{2} = -\frac{7\pi}{2} + 5 \cdot 2\pi = \frac{-7\pi + 10\pi}{2} = \frac{3\pi}{2}$$

So $g\left(-\frac{7\pi}{2}\right) = g\left(\frac{3\pi}{2}\right) = 0$

From the table, we can verify that $g(3\pi/2) = 0$.

Question 15 Solutions:

A) Consider angle α where $\sin(\alpha) = 0.1$. To find the possible values of $\cos(\alpha)$, we use the Pythagorean identity:

$$\sin^{2}(\alpha) + \cos^{2}(\alpha) = 1$$

$$\cos^{2}(\alpha) = 1 - \sin^{2}(\alpha)$$

$$= 1 - (0.1)^{2}$$

$$= 1 - 0.01$$

$$= 0.99$$

Therefore, $\cos(\alpha) = \pm \sqrt{0.99}$, giving us two possible values:

$$\cos(\alpha) = \sqrt{0.99}$$

or
$$\cos(\alpha) = -\sqrt{0.99}$$

B) To find sin(2x) in terms of sin(x) and cos(x), we use the double angle formula:

$$\sin(x+x) = \sin(x)\cos(x) + \cos(x)\sin(x)$$
$$\sin(2x) = 2\sin(x)\cos(x)$$

C) For $\frac{\sin x}{\sec x} + \frac{\cos x}{\csc x} = \sin(a)$, we simplify the left side:

$$= \frac{\sin x}{\frac{1}{\cos x}} + \frac{\cos x}{\frac{1}{\sin x}}$$
$$= \sin x \cdot \cos x + \cos x \cdot \sin x$$
$$= 2\sin x \cos x$$

From part B, we know that $2 \sin x \cos x = \sin(2x)$. Therefore:

$$\sin(a) = \sin(2x)$$

This means that a = 2x, so our answer is a = 2x.

D) For the integer value b such that $b = \sin^2(x) \cdot (1 + \cot^2(x))$, we simplify:

$$b = \sin^2(x) \cdot \left(1 + \frac{\cos^2(x)}{\sin^2(x)}\right)$$
$$= \sin^2(x) + \sin^2(x) \cdot \frac{\cos^2(x)}{\sin^2(x)}$$
$$= \sin^2(x) + \cos^2(x)$$
$$= 1$$

Therefore, b = 1.

Question 16 Solutions:

A) Based on the residual plots:

- Model 1 (Quadratic): Shows small, random scatter around zero
- Model 2 (Exponential): Shows clear curved pattern
- Model 3 (Linear): Shows clear curved pattern

Model 1 (quadratic regression) provides the best fit as its residual plot shows random scatter.

- B) Using exponential regression: $P(t) = 3605.939(1.1193)^t$
- C) Population prediction for 2027 (t = 18):

$$P(18) = 3,605.939(1.1193)^{18}$$

= 27,407 people

Question 17 Solutions:

Use your calculator to find the sinusoidal regression model: $y = 1.23372 \cdot \sin(0.519979x - 2.98293) + 2.91505$

A) For a function of the form $A\sin(Bx+C) + D$, the amplitude is |A|.

Amplitude =
$$|1.23372| = 1.23372$$

B) The midline of a sinusoidal function is the horizontal line around which the function oscillates, which corresponds to the vertical shift D.

Midline : y = 2.91505

C) To calculate the residual for the point (12, 2.5), we need to find the predicted value at x = 12 and subtract it from the actual value.

Predicted value = $1.23372 \cdot \sin(0.519979 \cdot 12 - 2.98293) + 2.91505$ = $1.23372 \cdot \sin(6.239748 - 2.98293) + 2.91505$ = $1.23372 \cdot \sin(3.256818) + 2.91505$ = $1.23372 \cdot (-0.114971) + 2.91505$ $\approx -0.141841 + 2.91505$ ≈ 2.7732

Now we can calculate the residual:

Residual = Actual value - Predicted value = 2.5 - 2.7732 ≈ -0.2732

D) Since the residual is negative (the actual value is less than the predicted value), our model overestimates the depth at t = 12 hours.