Quiz 6 Solutions

(2) Solutions:

- A) For an equilateral triangle with height h = 6: Let s be the side length. The height divides the base into two equal parts. Using the 30-60-90 triangle formed: $6 = \frac{s\sqrt{3}}{2}$ Therefore: $s = \frac{12}{\sqrt{3}} = 4\sqrt{3}$ meters
- B) For the 30-60-90 triangle with hypotenuse 5: Side *a* (opposite to $\frac{\pi}{3}$ or 60°) = $5 \cdot \frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{2}$ units
- C) Side b (opposite to $\frac{\pi}{6}$ or 30°) = $5 \cdot \frac{1}{2} = \frac{5}{2}$ units
- D) For point $(10, 10\sqrt{3})$ on circle: $\tan(\theta) = \frac{10\sqrt{3}}{10} = \sqrt{3}$ Therefore, $\theta = \frac{\pi}{3}$ radians
- E) Using the Pythagorean theorem: $r^2 = 10^2 + (10\sqrt{3})^2 = 100 + 300 = 400$ Therefore, r = 20 units

(4) Solutions:

- A) For point (0.4, -0.9) on unit circle: $\tan(\theta) = \frac{-0.9}{0.4} = -2.25$
- B) At $\frac{\pi}{2}$ radians: $y = r \sin(\frac{\pi}{2}) = 30 \cdot 1 = 30$ units
- C) At $\frac{5\pi}{3}$ radians:

$$y = r \sin(\frac{5\pi}{3}) = 20 \cdot \sin(\frac{5\pi}{3}) = 20 \cdot (-\frac{\sqrt{3}}{2}) = -10\sqrt{3}$$
 units

D) At $\frac{\pi}{3}$ radians:

Slope =
$$\tan(\frac{\pi}{3}) = \sqrt{3}$$

- E) Sine is positive in Quadrants I and II
- F) Tangent is positive in Quadrants I and III

(5) Solutions:

- A) Given $\cos(\theta) = 0.4$: $x = r \cos(\theta) = 5 \cdot 0.4 = 2$ units B) $\cos(\frac{7\pi}{4}) = \frac{\sqrt{2}}{2}$
- C) $\tan(\frac{\pi}{3}) = \sqrt{3}$

- D) On $[2\pi, 4\pi]$, $\tan(\frac{x}{2}) = 0$ when $\frac{x}{2} = \pi$ or 2π Therefore, $x = 2\pi, 4\pi$
- E) If $\tan(\alpha) = \frac{3}{8}$, then that is the slope of the terminal ray: $\frac{3}{8}$

(13) Solutions:

A) For $n(x) = 2 \arccos(x)$:

Let's analyze the function:

- $\operatorname{arccos}(x)$ has range $[0, \pi]$ and domain [-1, 1]
- When we multiply by 2, the range doubles to $[0, 2\pi]$
- The domain remains [-1, 1]

Looking at the graphs:

- Graph A ranges from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$
- Graph B ranges from 0 to π
- Graph C ranges from 0 to 2π (correct)
- Graph D ranges from 0 to π

Therefore, $n(x) = 2 \arccos(x)$ is graph C

- B) For $m(x) = \arctan(\frac{x}{2}) + \pi$: Range is $(\frac{\pi}{2}, \frac{3\pi}{2})$
- C) For $f(x) = \frac{1}{2}\sin(x)$ on $[-\frac{\pi}{2}, \frac{\pi}{2}]$: Domain of f^{-1} is $[-\frac{1}{2}, \frac{1}{2}]$
- D) Range of f^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

(14) Solutions:

A) For $g(x) = 3\csc(x+2) - 1$:

Let's track how each transformation affects the range:

- 1) The range of $\csc(x)$ is $(-\infty, -1] \cup [1, \infty)$
- 2) Horizontal shift: $\csc(x+2) \bullet$ Shifts the graph 2 units left \bullet Range remains $(-\infty, -1] \cup [1, \infty)$
- 3) Vertical dilation: $3 \csc(x+2) \bullet \text{All output values are tripled} \bullet \text{Range becomes } (-\infty, -3] \cup [3, \infty)$
- 4) Vertical shift: $3 \csc(x+2) 1 \bullet$ Shifts the graph down 1 unit Range becomes $(-\infty, -4] \cup [2, \infty)$
- B) For $f(x) = \frac{1}{10} \csc(x) 1$: Domain is $\{x | x \neq \pi n, n \in \mathbb{Z}\}$
- C) Vertical asymptotes of sec(x) on $[0, 2\pi]$:

$$x = \frac{\pi}{2}, \frac{3\pi}{2}$$

D) Vertical asymptotes of $\cot(x)$ on $[0, 2\pi]$:

$$x = 0, \pi, 2\pi$$

E) Solutions for $\csc(3x) = 0$ on $[0, \pi]$:

For $\csc(3x) = 0$, $\frac{1}{\sin(3x)} = 0$, which never happens. A fraction can only be zero if the numerator is zero.

F) Solutions for $\sec(3x) = 2$ on $[0, \pi]$:

$$\sec(3x) = 2$$
$$\frac{1}{\cos(3x)} = 2$$
$$\cos(3x) = \frac{1}{2}$$

If we let a = 3x, then $\cos(a) = \frac{1}{2}$ occurs when:

$$a = \pm \frac{\pi}{3} + 2\pi k \text{ where } k \text{ is an integer}$$
$$3x = \pm \frac{\pi}{3} + 2\pi k$$
$$x = \pm \frac{\pi}{9} + \frac{2\pi k}{3}$$

On $[0, \pi]$, this occurs when: $x = \frac{\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9}$