Spring 2025 Laird Homework 4 Solutions

Question 1

 $f(x) = 3\sin\left(\frac{2\pi}{5}(x-2)\right) + 10$

Problem

Write a sinusoidal function with a period of 5, an amplitude of 3, a midline of y = 10, that passes through (2, 10).

Solution

For a sinusoidal function in the form $f(x) = a \sin(b(x-c)) + d$:

- Amplitude a = 3
- Period = 5, so $b = \frac{2\pi}{5}$
- Midline d = 10

Since the function passes through (2, 10) and 10 is the midline, this means $\sin(b(2-c)) = 0$. When sine equals 0, its input must be a multiple of π .

So $\frac{2\pi}{5}(2-c) = n\pi$, where *n* is an integer. Solving for *c*:

$$2 - c = \frac{5n\pi}{2\pi} = \frac{5n}{2}$$
$$c = 2 - \frac{5n}{2}$$

The simplest solution is when n = 0, giving c = 2. Therefore:

$$f(x) = 3\sin\left(\frac{2\pi}{5}(x-2)\right) + 10$$

Question 2

Part A

Daylight minutes are *increasing* at a *decreasing rate* on day 150.

We need to analyze the behavior of the function $D(t) = 160 \cos\left(\frac{2\pi}{365}(t-172)\right) + 729$ at t = 150. First, let's identify key features of this cosine function:

- The period is 365 days (one full year)
- The function reaches its maximum value when $\cos\left(\frac{2\pi}{365}(t-172)\right) = 1$, which occurs when t = 172
- The function reaches its minimum value when $\cos\left(\frac{2\pi}{365}(t-172)\right) = -1$, which occurs at $t = 172 + \frac{365}{2} = 354.5$

To determine if daylight is increasing or decreasing at t = 150, we need to determine where day 150 falls in the cosine cycle:

- Day 150 is 22 days before day 172 (the maximum)
- Since cosine increases from t = 354.5 to t = 172 (considering the cyclic nature), day 150 falls in this increasing region
- Therefore, daylight minutes are increasing on day 150

To determine if the rate of increase is itself increasing or decreasing:

- The cosine function's rate of change varies throughout its cycle
- It changes most rapidly at the midpoints between extrema (days 263.25 and 445.75/80.75)
- It changes least rapidly near the extrema (days 172 and 354.5)
- Since day 150 is approaching the maximum at day 172, the rate of increase is slowing down
- Therefore, daylight minutes are increasing at a decreasing rate on day 150

We can also verify this graphically: as we approach the peak of a cosine curve, the slope is positive but gradually becoming less steep (approaching zero at the maximum).

Part B

Day 172 (June 21) gets the most daylight.

The maximum daylight occurs when $\cos\left(\frac{2\pi}{365}(t-172)\right) = 1$, which happens when $\frac{2\pi}{365}(t-172) = 0$. Solving:

t

$$-172 = 0$$
$$\Rightarrow t = 172$$

Therefore, day 172 (June 21) gets the most daylight.

Question 3

Part A

 $f(x) = \sin(x+c)$ is an even function when $c = \frac{\pi}{2} + n\pi$ for any integer n.

A function is even if f(-x) = f(x) for all values of x. For $f(x) = \sin(x + c)$, we have:

$$f(-x) = \sin(-x+c)$$

For f to be even, we need f(-x) = f(x), so:

$$\sin(-x+c) = \sin(x+c)$$

Using the identity $\sin(-\theta) = -\sin(\theta)$, we can rewrite the left side:

$$-\sin(x-c) = \sin(x+c)$$

This equation holds when $\sin(x+c) = -\sin(x-c)$ for all x. When $c = \frac{\pi}{2}$, let's check:

$$\ln(x + \frac{\pi}{2}) = -\sin(x - \frac{\pi}{2})$$

Using the identities $\sin(x + \frac{\pi}{2}) = \cos(x)$ and $\sin(x - \frac{\pi}{2}) = -\cos(x)$:

$$\cos(x) = -(-\cos(x))$$
$$\cos(x) = \cos(x)$$

This is true for all x. The sine function with a phase shift of $\frac{\pi}{2}$ becomes $\cos(x)$, which is an even function. Similarly, when $c = \frac{3\pi}{2}, \frac{5\pi}{2}, ...$, we get $-\cos(x)$, which is also even.

Therefore, $f(x) = \sin(x+c)$ is an even function when $c = \frac{\pi}{2} + n\pi$ for any integer n.

Part B

 $f(x) = \sin(x+c)$ is an odd function when $c = n\pi$ for any integer n.

A function is odd if f(-x) = -f(x) for all values of x. For $f(x) = \sin(x+c)$:

$$f(-x) = \sin(-x+c)$$
$$-f(x) = -\sin(x+c)$$

For f to be odd, we need $\sin(-x+c) = -\sin(x+c)$ for all x. Using $\sin(-\theta) = -\sin(\theta)$:

 $\sin(-x+c) = -\sin(x-c)$

So we need $-\sin(x-c) = -\sin(x+c)$, which simplifies to:

$$\sin(x-c) = \sin(x+c)$$

This is true when x - c and x + c differ by a complete period (2π) or when they are supplementary angles. The simplest case is when $c = 0, \pi, 2\pi$, etc. In other words, $c = n\pi$ where n is any integer. For example:

- When c = 0, $f(x) = \sin(x)$, which is naturally odd
- When $c = \pi$, $f(x) = \sin(x + \pi) = -\sin(x)$, which is also odd

Therefore, $f(x) = \sin(x+c)$ is an odd function when $c = n\pi$, where n is any integer.

Question 4

 $h(t) = 2.5 \sin\left(\frac{\pi t}{6}\right)$

Given:

- Maximum height = 2.5 feet
- Minimum height = -2.5 feet
- At t = 0, h = 0 (dolphin at surface)
- It takes 3 seconds to reach maximum height from surface

For $h(t) = a \sin(bt)$:

- Amplitude a = 2.5
- At t = 0, h(0) = 0
- At t = 3, $h(3) = 2.5 = 2.5 \sin(3b)$, so $\sin(3b) = 1$
- This means $3b = \frac{\pi}{2} + 2n\pi$
- The simplest solution is $b = \frac{\pi}{6}$

Therefore:

$$h(t) = 2.5 \sin\left(\frac{\pi t}{6}\right)$$

We can verify:

- h(0) = 0 (surface)
- h(3) = 2.5 (maximum height)
- h(6) = 0 (surface again)
- h(9) = -2.5 (minimum height)
- h(12) = 0 (back to surface)

This gives a full period of 12 seconds, which matches our scenario perfectly.

Question 6

 $d(t) = 2.5\cos(20\pi t)$

Given:

- Initial position is at the top: d(0) = 2.5 cm
- Period is 0.1 seconds
- The height varies from -2.5 cm to 2.5 cm

For a cosine function in the form $d(t) = a\cos(bt) + c$:

- Amplitude $a = \frac{2.5 (-2.5)}{2} = 2.5$ cm
- Period = 0.1 seconds, so $b = \frac{2\pi}{0.1} = 20\pi$
- Vertical shift $c = \frac{2.5+2.5}{2} = 2.5$ cm (midline)

Since the needle starts at the top position (t = 0, d = 2.5):

$$d(0) = 2.5 \cos(0) + 2.5$$

= 2.5 \cdot 1 + 2.5
= 5\langle

Therefore:

$$d(t) = 2.5\cos(20\pi t) + 2.5$$

We can verify:

- d(0) = 5 (top position)
- $d(0.05) = 2.5\cos(20\pi \cdot 0.05) + 2.5 = 2.5\cos(\pi) + 2.5 = 2.5 \cdot (-1) + 2.5 = 0$ (middle position)
- $d(0.1) = 2.5\cos(20\pi \cdot 0.1) + 2.5 = 2.5\cos(2\pi) + 2.5 = 2.5 \cdot 1 + 2.5 = 5$ (bottom position)
- $d(0.15) = 2.5\cos(20\pi \cdot 0.15) + 2.5 = 2.5\cos(3\pi) + 2.5 = 2.5\cdot(-1) + 2.5 = 0$ (middle position)

This confirms our model accurately represents the needle's motion.

Question 7

The local minima of h(x) occur at $x = \frac{\pi}{4} + n\pi$, where n is any integer.

Starting with $f(x) = \cos(x)$, we apply the transformations:

• Horizontal dilation by factor $\frac{1}{2}$ means the function completes its cycle twice as fast, giving $g(x) = \cos(2x)$.

• A phase shift of $-\frac{\pi}{4}$ gives:

$$h(x) = g\left(x - \left(-\frac{\pi}{4}\right)\right)$$
$$= g\left(x + \frac{\pi}{4}\right)$$
$$= \cos\left(2\left(x + \frac{\pi}{4}\right)\right)$$
$$= \cos\left(2x + \frac{\pi}{2}\right)$$

Using the identity $\cos\left(A + \frac{\pi}{2}\right) = -\sin(A)$, we can rewrite:

$$h(x) = \cos\left(2x + \frac{\pi}{2}\right) = -\sin(2x)$$

To find local minima of $h(x) = -\sin(2x)$, we need to determine when this function reaches its lowest points.

Since $\sin(\theta)$ has a maximum value of 1, the function $-\sin(\theta)$ has a minimum value of -1. Therefore, $h(x) = -\sin(2x)$ reaches its minimum value when $\sin(2x) = 1$. $\sin(\theta) = 1$ occurs when $\theta = \frac{\pi}{2} + 2n\pi$ for any integer n. So we need:

$$2x = \frac{\pi}{2} + 2n\pi$$
$$x = \frac{\pi}{4} + n\pi$$

Therefore, the local minima of h(x) occur at $x = \frac{\pi}{4} + n\pi$, where n is any integer. We can verify these are minima:

• At
$$x = \frac{\pi}{4}$$
: $h\left(\frac{\pi}{4}\right) = -\sin\left(2 \cdot \frac{\pi}{4}\right) = -\sin\left(\frac{\pi}{2}\right) = -1$

• At $x = \frac{\pi}{4} + \pi = \frac{5\pi}{4}$: $h\left(\frac{5\pi}{4}\right) = -\sin\left(2 \cdot \frac{5\pi}{4}\right) = -\sin\left(\frac{10\pi}{4}\right) = -\sin\left(\frac{\pi}{2} + 2\pi\right) = -1$

Question 9

The function $f(x) = 2\sin(4x)$ completes 63 full periods in the interval 0 < x < 100.

We need to determine how many complete periods the function $f(x) = 2\sin(4x)$ has in the interval 0 < x < 100.

First, let's find the period of this function:

For a function in the form $\sin(bx)$, the period is $\frac{2\pi}{b}$. In our case, with $f(x) = 2\sin(4x)$:

- The coefficient 2 is the amplitude, which doesn't affect the period.
- b = 4, so the period is $\frac{2\pi}{4} = \frac{\pi}{2}$.

Now, to find how many complete periods fit in the interval 0 < x < 100:

Number of periods =
$$\frac{\text{Length of interval}}{\text{Period}}$$

= $\frac{100 - 0}{\pi/2}$
= $\frac{100}{\pi/2}$
= $\frac{200}{\pi}$
 ≈ 63.6620

Since we're looking for complete periods, we take the integer part: 63 complete periods. We can verify this:

- 63 periods cover a distance of $63 \cdot \frac{\pi}{2} = \frac{63\pi}{2} \approx 98.9602$ units
- 64 periods would cover $64 \cdot \frac{\pi}{2} = 32\pi \approx 100.5310$ units, which exceeds our interval

Therefore, the function $f(x) = 2\sin(4x)$ completes exactly 63 periods in the interval 0 < x < 100.