Spring 2025 Laird Homework 11

Instructions: Use desmos.com/calculator to answer the following questions. Round all decimal answers to 4 places. Desmos Hints:

- Always use x as your independent variable, even if the problem uses a different variable.
- Use horizontal and vertical lines to identify where a function is equal to a constant.
- 1. Let f be an increasing function defined for x > 0. The function g is given by $g(x) = 0.25x^3 9.5x^2 + 110x 399$. Find the input values of x for which g(x) = 2.
- 2. Consider the piecewise function W defined by

$$W(t) = \begin{cases} 125 + 0.2t^2 & \text{for } 0 \le t \le 20\\ 165 + 2t & \text{for } t > 20 \end{cases}$$

On which of the following intervals does W(t) have the greatest average rate of change? (Hint: It is not necessary to calculate the AROC for each interval.)

- (a) 1 < t < 2
- (b) 10 < t < 11
- (c) 17 < t < 18
- (d) 24 < t < 25
- 3. The average monthly high temperature, in degrees Fahrenheit (°F), varies periodically for a certain city. The table gives the average monthly high temperature for selected months of the year, where t is the number of the month.

Month (Value of t)	Temperature (°F)
January $(t=1)$	42.8
April $(t=4)$	51.3
July $(t=7)$	67.1
August $(t=8)$	67.4
October $(t = 10)$	53.8
December $(t = 12)$	42.0

Based on a sinusoidal regression of these data, a model is constructed to predict average monthly high temperature as a function of time t. What is the average monthly high temperature predicted by the model for June (t = 9)?

4. The function L is defined by $L(t) = ae^{-0.04t} + b$, where a and b are positive constants. If L(0) = 12 and $\lim_{t\to\infty} L(t) = 1$, for what value of t is L(t) = 6?