Spring 2025 Laird Homework 1 Solutions

- 1. In a right triangle, if one leg is 15 units and the hypotenuse is 17 units, find:
 - (a) The length of the other leg
 - (b) The sine of the angle between the 15-unit leg and the hypotenuse
 - (c) The sine of the angle between the unknown leg and the hypotenuse
- 2. An equilateral triangle has sides of length 8 units.
 - (a) Find the height of the triangle
 - (b) Find the area of the triangle
 - (c) What is the measure of each angle in radians?

3. Consider a triangle where side a = 7 units, angle $A = \frac{5\pi}{6}$ radians, and angle $B = \frac{\pi}{12}$ radians.

- (a) Find side b and side c
- 4. In a right triangle, if the angle between the adjacent side and the hypotenuse is $\frac{\pi}{4}$ radians and the opposite side is 6 units:
 - (a) Find the length of the adjacent side
 - (b) Find the length of the hypotenuse
- 5. In the xy-plane an angle in standard position measures $\frac{\pi}{6}$ radians. A circle centered at the origin has a radius of 10 units. What is the y-coordinate of the point where the terminal ray of the angle intersects the circle?
- 6. In the xy-plane an angle in standard position measures $\frac{5\pi}{6}$ radians. A circle centered at the origin has a radius of 10 units. What is the y-coordinate of the point where the terminal ray of the angle intersects the circle?

Solutions

- 1. In the right triangle with leg 15 and hypotenuse 17:
 - (a) For the unknown leg (call it x):
 - Using the Pythagorean theorem: $15^2 + x^2 = 17^2$
 - $225 + x^2 = 289$
 - $x^2 = 64$
 - x = 8 (since length is positive)
 - (b) For sin of angle between 15-unit leg and hypotenuse:

•
$$\sin = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{8}{17}$$

(c) For sin of angle between 8-unit leg and hypotenuse:

•
$$\sin = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{15}{17}$$

- 2. For the equilateral triangle with sides of 8 units:
 - (a) Height (h):
 - Using 30-60-90 triangle formed by height
 - Half of base is 4 units
 - $h = 4\sqrt{3}$ units
 - (b) Area:
 - $A = \frac{1}{2} \cdot \text{base} \cdot \text{height}$
 - $A = \frac{1}{2} \cdot 8 \cdot 4\sqrt{3}$
 - $A = 16\sqrt{3}$ square units
 - (c) Each angle measures:
 - $\frac{\pi}{3}$ radians (since equilateral triangles have 60° angles)
- 3. For triangle with a = 7, $A = \frac{5\pi}{6}$, $B = \frac{\pi}{12}$:
 - (a) Finding sides b and c:
 - First find angle C: $C = \pi A B = \pi \frac{5\pi}{6} \frac{\pi}{12} = \frac{\pi}{12}$
 - Using law of sines:

$$\frac{b}{\sin(B)} = \frac{7}{\sin(A)}$$

•
$$b = 7 \cdot \frac{\sin(\frac{\pi}{12})}{\sin(\frac{5\pi}{6})} = 7 \cdot \frac{\sin(\frac{\pi}{12})}{\frac{1}{2}} = 14 \sin(\frac{\pi}{12})$$

• Similarly for c:
 $\frac{c}{\sin(C)} = \frac{7}{\sin(A)}$

•
$$c = 7 \cdot \frac{\sin(\frac{\pi}{12})}{\sin(\frac{5\pi}{6})} = 14\sin(\frac{\pi}{12}) \approx 3.623$$

- 4. For right triangle with angle $\frac{\pi}{4}$ and opposite side 6:
 - (a) Adjacent side:
 - Using $\tan(\frac{\pi}{4}) = \frac{\text{opposite}}{\text{adjacent}} = 1$
 - Therefore adjacent = opposite = 6 units
 - (b) Hypotenuse:
 - Using Pythagorean theorem: $6^2 + 6^2 = c^2$
 - $72 = c^2$
 - $c = 6\sqrt{2}$ units

- 5. For angle $\frac{\pi}{6}$ and radius 10:
 - y-coordinate = $r\sin(\frac{\pi}{6})$
 - $\bullet = 10 \cdot \frac{1}{2}$
 - $\bullet = 5$ units
- 6. For angle $\frac{5\pi}{6}$ and radius 10:
 - y-coordinate = $r\sin(\frac{5\pi}{6})$
 - $\bullet = 10 \cdot \frac{1}{2}$
 - $\bullet = 5$ units